Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

نویسندگان

  • Shouleh Nikzad
  • Michael Hoenk
  • April D. Jewell
  • John J. Hennessy
  • Alexander G. Carver
  • Todd J. Jones
  • Timothy M. Goodsall
  • Erika T. Hamden
  • Puneet Suvarna
  • J. Bulmer
  • F. Shahedipour-Sandvik
  • Edoardo Charbon
  • Preethi Padmanabhan
  • Bruce Hancock
  • L. Douglas Bell
چکیده

Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

III-Nitride photon counting avalanche photodiodes

In order for solar and visible blind III-nitride based photodetectors to effectively compete with the detective performance of PMT there is a need to develop photodetectors that take advantage of low noise avalanche gain. Furthermore, in certain applications, it is desirable to obtain UV photon counting performance. In this paper, we review the characteristics of III-nitride visible-blind avala...

متن کامل

Solar-blind UV detectors based on wide band gap semiconductors

Solid-state photon detectors based on semiconductors other than silicon are not yet considered mature technology but their current development opens new possibilities, also for space observations. Such devices are especially attractive for ultraviolet radiation detection, as semiconductor materials with band gaps larger than that of silicon can be produced and used as “visible-blind” or “solar-...

متن کامل

III-Nitride Based Avalanche Photo Detectors

Research into III-Nitride based avalanche photodiodes (APDs) is motivated by the need for high sensitivity ultraviolet (UV) detectors in numerous civilian and military applications. By designing III-Nitride photodetectors that utilize low-noise impact ionization high internal gain can be realized—GaN APDs operating in Geiger mode can achieve gains exceeding 1×10. Thus with careful design, it be...

متن کامل

Comparison of ultraviolet APDs grown on free-standing GaN and sapphire substrates

There is a need for semiconductor-based ultraviolet photodetectors to support avalanche gain in order to realize better performance andmore effective compete with existing technologies. Wide bandgap III-Nitride semiconductors are the promising material system for the development of avalanche photodiodes (APDs) that could be a viable alternative to current bulky UV detectors such as photomultipl...

متن کامل

ULTRAVIOLET DETECTORS: Nitrides push performance of UV photodiodes

Development of wide-bandgap III-nitride semiconductors has been a subject of intense focus since the 1990s, primarily driven by the quest for blue lasers and high-brightness light-emitting diodes (LEDs). In parallel, III-nitrides have been studied extensively for use in ultraviolet (UV) photodetectors because they offer intrinsic visibleor solar-blind detection, which would eliminate the need f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016